Anisotropy in the dielectric spectrum of hydration water and its relation to water dynamics.
نویسندگان
چکیده
Proteins, molecules, and macromolecular assemblies in water are surrounded by a nanometer-sized hydration layer with properties very different from bulk water. Here, we use classical molecular dynamics simulations to study the dielectric response of hydration water next to hydrophobic and hydrophilic planar surfaces. We find the interfacial dielectric absorption of water to be strongly anisotropic: compared to bulk water, which shows a broad dielectric absorption maximum around 15 GHz in the imaginary part of the dielectric function, the absorption for electric fields parallel to the surface is of similar strength and shows a slight redshift, while for perpendicular electric fields it is strongly attenuated and blueshifted. This anisotropy is generic for hydrophobic and hydrophilic surfaces. From our spatially resolved dielectric functions and a modified Maxwell-Garnett theory that accounts for anisotropic hydration layers around spherical particles, the dielectric absorption of solutions of organic molecules and micelles is derived to exhibit the experimentally known attenuation in combination with a redshift. These two features are traced back to the subtle interplay of interfacial depolarization effects and the dielectric anisotropy in the hydration layer. By a detailed analysis of the individual water molecule dynamics the perpendicular blueshift is shown not to be linked to accelerated water reorientation, but rather to dielectric boundary effects. Carefully conducted angularly resolved experiments at planar aqueous interfaces will be able to resolve this dielectric anisotropy and thus to confirm the subtle connection between spectral absorption features and the molecular water dynamics in hydration layers.
منابع مشابه
Dielectric spectroscopy study on ionic liquid microemulsion composed of water, TX-100, and BmimPF6.
We report here a broadband dielectric spectroscopy study on an ionic liquid microemulsion (ILM) composed of water, Triton X-100 (TX-100), and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)). It is found that the phase behavior of this ILM can be easily identified by its dielectric response. The dielectric behavior of the ILM in the GHz range is consistent with that of TX-100∕water m...
متن کاملAnomalous and anisotropic nanoscale diffusion of hydration water molecules in fluid lipid membranes.
We have studied nanoscale diffusion of membrane hydration water in fluid-phase lipid bilayers made of 1,2-dimyristoyl-3-phosphocholine (DMPC) using incoherent quasi-elastic neutron scattering. Dynamics were fit directly in the energy domain using the Fourier transform of a stretched exponential. By using large, 2-dimensional detectors, lateral motions of water molecules and motions perpendicula...
متن کاملState of Water in Nafion 117 Proton Exchange Membranes Studied by Dielectric Relaxation Spectroscopy
The dynamics and the nature of water environments in a fuel cell proton exchange membrane are studied experimentally. Specifically, the dynamics of water in Nafion 117 membranes, in the acid form, were investigated at two hydration levels and several temperatures by means of dielectric relaxation spectroscopy; two different dielectric spectroscopy experimental setups were employed for low (10-1...
متن کاملInterplay between hydration water and headgroup dynamics in lipid bilayers.
In this study, the interplay between water and lipid dynamics has been investigated by broadband dielectric spectroscopy and modulated differential scanning calorimetry (MDSC). The multilamellar lipid bilayer system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has been studied over a broad temperature range at three different water contents: about 3, 6, and 9 water molecules per lipid mol...
متن کاملWater dynamics and proton transfer in nafion fuel cell membranes.
The dynamics of water and its effect on proton transport kinetics in Nafion membranes are compared at several hydration levels. Nafion is the most widely used polyelectrolyte membrane in fuel cells. Ultrafast infrared spectroscopy of the O-D stretch of dilute HOD in H2O provides a probe of the local environment and hydrogen bond network dynamics of water confined in the hydrophilic regions of N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 137 10 شماره
صفحات -
تاریخ انتشار 2012